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PRACTICAL CONSIDERATIONS IN HUMAN-INDUCED VIBRATION

Baris Erkus1, 14 March 2007

Introduction

This document provides a review of fundamental concepts in structural dynamics and some applica-

tions in human-induced vibration analysis and mitigation of structures.

Modal Analysis of MDOF Structures

Consider a general n–DOF system defined by

(1)

Where ,  and  are the  mass, damping and stiffness matrices,  is the  external exci-

tation, and  is the  displacement vector. Herein,  can be a diagonal matrix with proper choices

of the reference frames. In practical applications,  and  matrices are computed using finite element

(FE) procedures,  is predefined. It can be shown that the structural response,  can be written in terms

of any modal matrix,  and the normal coordinates,  as

    and       and   (2)

where

  and  (3)

where  is the  mode shape. Substituting (2) into (1) and pre-multiplying by , another form of the

equation of motion is obtained as

(4)

It is convenient to define new structural matrices as

 ,    ,       and   (5)
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where ,  and  are called generalized mass, damping and stiffness matrices, respectively, and  is

the generalized excitation. Due to orthogonality of the mode shapes, these new structural matrices are

diagonal, i.e. 

 ,        and   (6)

It should be noted that since the damping matrix  is predefined in such a way that the generalized damp-

ing matrix  has a diagonal form for ease of mathematical computations. This type of damping is know as

classical damping. Generalized matrices do not have much practical meaning in this form. However, if the

modal matrix,  is selected in a way that mode shapes are mass orthonormalized, the generalized struc-

tural matrices take a more elegant and useful form as

 ,        and   (7)

where  and  are the modal damping ratio and the frequency of the  mode. Therefore, while a mass

orthonormalized modal matrix yields an identity generalized mass matrix, a randomly selected modal

matrix yields merely a diagonal generalized mass matrix.

It is very important to note that modal damping ratios and frequencies are independent of the selected

modal matrix. Therefore, to characterize the behavior of a mode, one only needs the modal damping ratio

and frequency; generalized mass,  is not required. To characterize the behavior of the overall MDOF

system, one needs the modal matrix that is used in the eigenvalue analysis of the equation of motion in

addition to the modal damping ratios and frequencies.

Modal Time-History Analysis of MDOF Structures

There are several numerical methods to solve the matrix differential equation (1). One of this method

is to solve (1) directly with explicit or implicit numerical schemes such as Newmark’s   method and

Runge-Kutta method, which can be called time-history analysis. Another method is to solve the modal

equations that results from the modal analysis, and then to combine the modal responses to find the final
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structural responses. This method can be called modal time-history analysis. Modal time-history analysis

is considerably time-effcient and more frequently used for higher degree-of-freedom systems compared to

time-history analysis. However, a typical modal time-history analysis always require a diagonal damping

matrix, while regular time-history analysis can solve systems with any type of damping matrix. In the fol-

lowing, a review of the modal time-history analysis is given.

The modal equations obtained from equation (4) can be written as

 (8)

Each of these equations can be solved using regular time-history method, and final structural responses can

be found using equations (2).

Effective Mass

This section provides a general form of an effective mass of a lumped-mass MDOF system that

vibrates in a predefined shape. Note that this shape is arbitrary and does not need to be a modal shape of

the system.

Consider the lumped-mass, n–DOF system shown in Fig. 1, and assume that it vibrates arbitrarily as

shown in Fig. 2 such that the deformation of the structure will follow a fixed shape, i.e.

(9)

where  is the displacement of mass  at time . The displacement of any joint can be written in

terms of a unique time-function,  and a constant,  as . Also, . In this case,

the overall displacement of the structure can be written in a vector form as

     or           where       (10)
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Now consider the following problem: Find a realization of the n–DOF system given in Fig. 1 such that

the equivalent system is characterized with the vibration of only one DOF (instead of n DOFs) and an

effective mass is attached to that joint. Such a realization is shown in Fig. 3. To find the effective mass,

, the kinetic energy of the original system is equated to the kinetic energy of the equivalent system at

time . The kinetic energy of the original system is given by

(11)

The kinetic energy of the equivalent system is

meff
i

t

Eoriginal
1
2
---m1 x·1 t( )( )2 1

2
---m2 x·2 t( )( )2 … 1

2
---mn x·n t( )( )2+ + +=

1
2
---m1 a1q· t( )( )2 1

2
---m2 a2q· t( )( )2 … 1

2
---mn anq· t( )( )2+ + +=

1
2
--- m1a1

2 m2a2
2 … mnan

2+ + +( ) q· t( )( )2=

1
2
--- q· t( )( )2 mkak

2

k 1=

n

=

m2

m1
mn

mi

Joint 1

Joint i

Joint 2

Joint n

FIG. 1 A general lumped-mass n–DOF system

m1
mn

FIG. 2 Arbitrary vibration



Practical Considerations in Human Induced Vibrations, Baris Erkus 14 March 2007

5

(12)

Equating the kinetic energies yields 

(13)

Equation (13) can be used to find the effective masses of various vibration shapes.

Effective Mass for a Mode Shape

In this section, first, a review of mode shapes and generalized masses is given. Then, an effective mass

for a given mode shape is found.

In the following, effective masses for two cases are derived: (a) a randomly selected modal matrix and (b)

a mass orthonormalized modal matrix.

Consider the problem defined in the previous section. Let an n–DOF structure vibrate in its  mode

shape instead of an arbitrary predefined shape, i.e.,  or  for all k. Please note that the

selected mode matrix  is randomly selected and is not necessarily a mass orthonormalized mode matrix.

It can be shown with some matrix algebra that the generalized mass of the  mode in (6) is indeed given
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(14)

Therefore, the effective mass for the  mode and  displacement is given by

(15)

If the mode shapes are selected such that the modal matrix is mass orthonormalized as given in (7), then

(16)

and the effective mass for this special case is given by

(17)

This completes the derivation of the effective masses. In the following section, effective masses are

derived thorugh the equation of motion of the equivalent system.

Response to an Excitation

In this section, a generalized form of the effective mass computation is given when an n–DOF,

lumped-mass structure vibrates in a predefined arbitrary shape and excited by an arbitrary force at a given

DOF. Then, a special case is considered, where the vibration shape is taken as one of the a mode shapes of

the structure instead of an arbitrary shape. Also given for this special case is the peak responses when the

excitation is a sinusoidal function.

Let the n–DOF structure shown in Fig. 1 vibrate in an arbitrary shape defined by equations (10) with

an external force F(t) applied at  DOF as shown in Fig. 4. Note that the force F(t) is excited exactly in

the direction of . The governing equation of motion of this vibration can be found easily by applying vir-

tual energy principles as
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(19)

where  and  are the damping and stiffness matrices of the n–DOF system, respectively.

Now, consider a system that is equivalent to the n–DOF system, which is given in Fig. 4, such that an

effective mass is attached to the  DOF, and an external force is applied at the  DOF. This equaivalent

system is shown in Fig. 5. The governing equation of motion of the equivalent system can also be derived

using virtual energy principles as

(20)

which can be written as

(21)

Therefore, the effective mass at the  DOF for a forced vibration at the  DOF is given by

(22)

The response of the overall structure can be found by two methods. In the first method, the equation (21) is

solved for , or equivalently, the equation
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(23)

is solved for . Then, the structural responses are given by ,   i.e.      for any DOF l.

In the second method, the governing equation of motion of the equivalent SDOF system is written as

(24)

and solved for  and the response of structure is then found as

,   i.e.   (25)

Next, the equivalent SDOF is found for a special case where the arbitrary shape is set to one of the

mode shapes of the structure. Note that the mode shape is not necessarily mass or displacement normal-

ized. Let the mode shape in consideration be the  mode, i.e. . The equation of motion of the n–

DOF structure becomes
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which can be simplified to
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where ,  are  given by (7). Similarly, the equation of motion of the equivalent SDOF system

becomes

(28)

Comparing equations (27) and (28), the effective mass that is attached to the  DOF of the structure,

which is vibrating in the  mode is found to be 

(29)

As explained before, the structural responses can be found in two ways. In the first method, the equation of

motion of the equivalent SDOF is written in terms of  as follows:

(30)

and the structural responses are found by solving (30) for  and are given by ,   i.e.   

for any DOF l.

In the second method, equation (28) is rewritten in terms of  as
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and the structural responses are found by solving (31) for  and are given by

,   i.e.   (32)

It is easy to note that the two methods presented above are identical except that former one uses normalized

modal responses while the latter uses the structural responses in the equation of motion, which results dif-

ferent forcing function coefficients, and therefore same structural responses.

Now, consider a special case where the excitation is a sinusoidal function and is defined by

(33)
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tions. As an example, consider equation (30) and the peak structural acceleration. The peak structural

acceleration corresponds to the peak of , which can be found as

(34)

which is simplified using (29) to

(35)

and the peak structural responses are given by

,   i.e.   . (36)

Also consider the equation (31). The peak structural acceleration  is given by

(37)

which simplifies to
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,   i.e.   (39)

which is identical to (36). These results show that peak structural responses are independent of the effec-

tive mass in the case of a special vibration, where the structure deformation is defined by one of its modes.

Also note that if the modal shapes,  are selected such that they are mass orthonormalized, then in the

above equations .

One important observation is that the only required information to compute peak accelerations is the

mode shapes and corresponding generalized masses. Different normalization methods do not provide any

significant convenience.
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Summary

This document provides the computation of effective masses for a general n-DOF, lumped-mass sys-

tem when it vibrates in a predefined shape. Special cases are considered when the predefined shape is

selected as one of the mode shapes of the structure and an excitation is applied at a point in the direction of

the corresponding DOF. Above derivations are straightforward for continuous systems. The results are

summarized in Table 1. 

TABLE 1 Effective masses, generalized masses and peak accelerations for different 
vibration shapes 
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Vector
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